Final Exam Dynamical Systems I

21-11-2001: 13.00h - 16.00h

1. The map $f = f_n : \mathbb{S}^1 \to \mathbb{S}^1$ is defined by

$$f(\theta) = \theta + \frac{2\pi}{n} + \frac{1}{n+1}\sin n\theta,$$

where $n \in \mathbb{Z}_{>0}$.

- (a) Sketch the phase portrait of f_3 .
- (b) Prove that f_n is a diffeomorphism.
- (c) Show that f has exactly two periodic orbits of minimal period n. Determine the stability types of these orbits.
- (d) Compute the rotation number of f.
- (e) Can f have periodic points of other minimal period than n? Explain your answer.
- (f) Is f Morse-Smale? Explain your answer.
- (g) Give the definition of a chaotic evolution. Does f have chaotic evolutions? Explain your answer.
- (h) Give the definition of sensitive dependence on initial conditions. Are there points where f has sensitive dependence on initial conditions? Explain your answer.
- 2. Consider the vector field

$$\dot{x} = y
\dot{y} = x^2 - \mu,$$

with $(x, y) \in \mathbb{R}^2$, and parameter $\mu \in \mathbb{R}$.

- (a) Compute the equilibria of this system and their stability types, depending on μ .
- (b) Determine the bifurcation points (of equilibria), and draw a bifurcation diagram.
- (c) For each bifurcation point, sketch a phase portrait for all qualitatively different cases, that is, for μ to the left and right of the bifurcation point, and at the bifurcation point.
- (d) In these phase portraits, indicate the stable and unstable manifolds of saddle points.

3. Let $f = f_{\alpha} : [0,1] \longrightarrow \mathbb{R}$ be the map defined by

$$f_{\alpha}(x) = \alpha(2x \mod 1),$$

where α is a parameter. Throughout this exercise we take $\alpha > 1$.

- (a) Sketch the map f for $\alpha = 2$.
- (b) Let $\Lambda \subset [0,1]$ be the set of all points whose forward orbit is contained in [0,1]. Explain how to construct Λ .
- (c) Prove that Λ is a nonempty compact set of zero Lebesgue measure.
- (d) Compute the (largest) Lyapunov exponent at any $x \in \Lambda$.
- (e) Give the definition of an eventually periodic point (in the case of maps), and show that the set of eventually fixed points of f is contained and dense in Λ .

Hint: use symbolic dynamics. Describe the symbol set, a suitable map on this set, and a conjugacy between this map and f. You do not need to show that the conjugacy is a homeomorphism, but you have to prove that it conjugates the two maps.

- (f) Prove that Λ is a Cantor set.
- (g) Determine the box counting dimension of Λ .
- (h) Bonus exercise for an extra half point: Compute the topological entropy of $f|_{\Lambda}$.